Pre-Scaling Optimization for Space Shift Keying Based on Semidefinite Relaxation
نویسندگان
چکیده
منابع مشابه
Semidefinite relaxation for dominating set
‎It is a well-known fact that finding a minimum dominating set and consequently the domination number of a general graph is an NP-complete problem‎. ‎In this paper‎, ‎we first model it as a nonlinear binary optimization problem and then extract two closely related semidefinite relaxations‎. ‎For each of these relaxations‎, ‎different rounding algorithm is exp...
متن کاملAdaptive generalized space shift keying
In this article, we propose a closed-loop precoding method for the Generalized Space Shift Keying (GSSK) modulation scheme, suitable for Multiple-Input-Single-Output (MISO) systems and denoted as adaptive GSSK (AGSSK), which achieves transmit-diversity gains in contrast to GSSK. For the case of a perfect feedback channel, we analytically show that for three and four antennas at the transmitter ...
متن کاملSpace Shift Keying Modulation for MIMO Systems
In this seminar, we introduce a modulation scheme, termed space shift keying (SSK), suitable for multiple-input multiple-output (MIMO) systems. SSK modulation, which is a fundamental component of spatial modulation, inherently exploits fading in wireless communications to provide better performance over conventional amplitude/phase modulation (APM) techniques. In SSK, only the antenna indices, ...
متن کاملOn solving biquadratic optimization via semidefinite relaxation
In this paper, we study a class of biquadratic optimization problems. We first relax the original problem to its semidefinite programming (SDP) problem and discuss the approximation ratio between them. Under some conditions, we show that the relaxed problem is tight. Then we consider how to approximately solve the problems in polynomial time. Under several different constraints, we present vari...
متن کاملA semidefinite relaxation scheme for quadratically constrained
Semidefinite optimization relaxations are among the widely used approaches to find global optimal or approximate solutions for many nonconvex problems. Here, we consider a specific quadratically constrained quadratic problem with an additional linear constraint. We prove that under certain conditions the semidefinite relaxation approach enables us to find a global optimal solution of the unde...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Communications
سال: 2015
ISSN: 0090-6778
DOI: 10.1109/tcomm.2015.2470656